Computation (Jun 2023)
Stefan Blowing Impacts on Hybrid Nanofluid Flow over a Moving Thin Needle with Thermal Radiation and MHD
Abstract
This investigation focuses on the impact of Stefan blowing on the flow of hybrid nanoliquids over a moving slender needle with magnetohydrodynamics (MHD), thermal radiation, and entropy generation. To facilitate analysis, suitable transformations are applied to convert the governing partial differential equations into a set of ordinary differential equations, which are then solved analytically using Homotopy Analysis Method (HAM) in Mathematica. This study investigates how varying the values of Stefan blowing, magnetic field, and thermal radiation parameters impact the profiles of velocity, temperature, and concentration. Additionally, the study analyzes the outcomes of the local skin friction, local Nusselt number, and local Sherwood number. Increasing the magnetic field reduces the velocity profile. The temperature profile is enhanced by a rise in the thermal radiation parameter. Also, the results reveal that an increase in the Stefan blowing number leads to higher profiles of velocity.
Keywords