Genetics Selection Evolution (Sep 2024)

A million-cow genome-wide association study of productive life in U.S. Holstein cows

  • Zuoxiang Liang,
  • Dzianis Prakapenka,
  • Hafedh B. Zaabza,
  • Paul M. VanRaden,
  • Curtis P. Van Tassell,
  • Yang Da

DOI
https://doi.org/10.1186/s12711-024-00935-1
Journal volume & issue
Vol. 56, no. 1
pp. 1 – 15

Abstract

Read online

Abstract Background Productive life (PL) of a cow is the time the cow remains in the milking herd from first calving to exit from the herd due to culling or death and is an important economic trait in U.S. Holstein cattle. The large samples of Holstein genomic evaluation data that have become available recently provided unprecedented statistical power to identify genetic factors affecting PL in Holstein cows using the approach of genome-wide association study (GWAS). Methods The GWAS analysis used 1,103,641 Holstein cows with phenotypic observations on PL and genotypes of 75,282 single nucleotide polymorphism (SNP) markers. The statistical tests and estimation of SNP additive and dominance effects used the approximate generalized least squares method implemented by the EPISNPmpi computer program. Results The GWAS detected 5390 significant additive effects of PL distributed over all 29 autosomes and the X–Y nonrecombining region of the X chromosome (Chr31). Two chromosome regions had the most significant and largest cluster of additive effects, the SLC4A4-GC-NPFFR2 (SGN) region of Chr06 with pleiotropic effects for PL, fertility, somatic cell score and milk yield; and the 32–52 Mb region of Chr10 with peak effects for PL in or near RASGRP1 with many important immunity functions. The dominance tests detected 38 significant dominance effects including 12 dominance effects with sharply negative homozygous recessive genotypes on Chr18, Chr05, Chr23 and Chr24. Conclusions The GWAS results showed that highly significant genetic effects for PL were in chromosome regions known to have highly significant effects for fertility and health and a chromosome region with multiple genes with reproductive and immunity functions. SNPs with rare but sharply negative homozygous recessive genotypes for PL existed and should be used for eliminating heifers carrying those homozygous recessive genotypes.