Surfaces (Feb 2020)
H-Terminated Diamond Surface Band Bending Characterization by Angle-Resolved XPS
Abstract
Concerning diamond-based electronic devices, the H-terminated diamond surface is one of the most used terminations as it can be obtained directly by using H2 plasma, which also is a key step for diamond growth by chemical vapour deposition (CVD). The resultant surfaces present a p-type surface conductive layer with interest in power electronic applications. However, the mechanism for this behavior is still under discussion. Upward band bending due to surface transfer doping is the most accepted model, but has not been experimentally probed as of yet. Recently, a downward band bending very near the surface due to shallow acceptors has been proposed to coexist with surface transfer doping, explaining most of the observed phenomena. In this work, a new approach to the measurement of band bending by angle-resolved X-ray photoelectron spectroscopy (ARXPS) is proposed. Based on this new interpretation, a downward band bending of 0.67 eV extended over 0.5 nm was evidenced on a (100) H-terminated diamond surface.
Keywords