Bioengineering (Apr 2023)
Evaluation of the Effect of Photodynamic Therapy on CAM-Grown Sarcomas
Abstract
Resection margin adequacy plays a critical role in the local control of sarcomas. Fluorescence-guided surgery has increased complete resection rates and local recurrence-free survival in several oncological disciplines. The purpose of this study was to determine whether sarcomas exhibit sufficient tumor fluorescence (photodynamic diagnosis (PDD)) after administration of 5-aminolevulinic acid (5-ALA) and whether photodynamic therapy (PDT) has an impact on tumor vitality in vivo. Sixteen primary cell cultures were derived from patient samples of 12 different sarcoma subtypes and transplanted onto the chorio-allantoic membrane (CAM) of chick embryos to generate 3-dimensional cell-derived xenografts (CDXs). After treatment with 5-ALA, the CDXs were incubated for another 4 h. Subsequently accumulated protoporphyrin IX (PPIX) was excited by blue light and the intensity of tumor fluorescence was analyzed. A subset of CDXs was exposed to red light and morphological changes of both CAMs and tumors were documented. Twenty-four hours after PDT, the tumors were excised and examined histologically. High rates of cell-derived engraftments on the CAM were achieved in all sarcoma subtypes and an intense PPIX fluorescence was observed. PDT of CDXs resulted in a disruption of tumor-feeding vessels and 52.4% of CDXs presented as regressive after PDT treatment, whereas control CDXs remained vital in all cases. Therefore, 5-ALA mediated PDD and PDT appear to be promising tools in defining sarcoma resection margins (PDD) and adjuvant treatment of the tumor bed (PDT).
Keywords