Remote Sensing (Nov 2017)

Normalized Difference Vegetation Index as an Estimator for Abundance and Quality of Avian Herbivore Forage in Arctic Alaska

  • Kyle R. Hogrefe,
  • Vijay P. Patil,
  • Daniel R. Ruthrauff,
  • Brandt W. Meixell,
  • Michael E. Budde,
  • Jerry W. Hupp,
  • David H. Ward

DOI
https://doi.org/10.3390/rs9121234
Journal volume & issue
Vol. 9, no. 12
p. 1234

Abstract

Read online

Tools that can monitor biomass and nutritional quality of forage plants are needed to understand how arctic herbivores may respond to the rapidly changing environment at high latitudes. The Normalized Difference Vegetation Index (NDVI) has been widely used to assess changes in abundance and distribution of terrestrial vegetative communities. However, the efficacy of NDVI to measure seasonal changes in biomass and nutritional quality of forage plants in the Arctic remains largely un-evaluated at landscape and fine-scale levels. We modeled the relationships between NDVI and seasonal changes in aboveground biomass and nitrogen concentration in halophytic graminoids, a key food source for arctic-nesting geese. The model was calibrated based on data collected at one site and validated using data from another site. Effects of spatial scale on model accuracy were determined by comparing model predictions between NDVI derived from moderate resolution (250 × 250 m pixels) satellite data and high resolution (20 cm diameter area) handheld spectrometer data. NDVI derived from the handheld spectrometer was a superior estimator (R2 ≥ 0.67) of seasonal changes in aboveground biomass compared to satellite-derived NDVI (R2 ≤ 0.40). The addition of temperature and precipitation variables to the model for biomass improved fit, but provided minor gains in predictive power beyond that of the NDVI-only model. This model, however, was only a moderately accurate estimator of biomass in an ecologically-similar halophytic graminoid wetland located 100 km away, indicating the necessity for site-specific validation. In contrast to assessments of biomass, satellite-derived NDVI was a better estimator for the timing of peak percent of nitrogen than NDVI derived from the handheld spectrometer. We confirmed that the date when NDVI reached 50% of its seasonal maximum was a reasonable approximation of the period of peak spring vegetative green-up and peak percent nitrogen. This study demonstrates the importance of matching the scale of NDVI measurements to the vegetation properties of biomass and nitrogen phenology.

Keywords