Malaria Journal (Jul 2010)

Analysis of innate defences against <it>Plasmodium falciparum </it>in immunodeficient mice

  • Van Rooijen Nico,
  • Mejia Pedro,
  • Tyagi Rajeev,
  • Arnold Ludovic,
  • Pérignon Jean-Louis,
  • Druilhe Pierre

DOI
https://doi.org/10.1186/1475-2875-9-197
Journal volume & issue
Vol. 9, no. 1
p. 197

Abstract

Read online

Abstract Background Mice with genetic deficiencies in adaptive immunity are used for the grafting of human cells or pathogens, to study human diseases, however, the innate immune responses to xenografts in these mice has received little attention. Using the NOD/SCID Plasmodium falciparum mouse model an analysis of innate defences responsible for the substantial control of P. falciparum which remains in such mice, was performed. Methods NOD/SCID mice undergoing an immunomodulatory protocol that includes, clodronate-loaded liposomes to deplete macrophages and an anti-polymorphonuclear leukocytes antibody, were grafted with human red blood cells and P. falciparum. The systematic and kinetic analysis of the remaining innate immune responses included the number and phenotype of peripheral blood leukocytes as well as inflammatory cytokines/chemokines released in periphery. The innate responses towards the murine parasite Plasmodium yoelii were used as a control. Results Results show that 1) P. falciparum induces a strong inflammation characterized by an increase in circulating leukocytes and the release of inflammatory cytokines; 2) in contrast, the rodent parasite P. yoelii, induces a far more moderate inflammation; 3) human red blood cells and the anti-inflammatory agents employed induce low-grade inflammation; and 4) macrophages seem to bear the most critical function in controlling P. falciparum survival in those mice, whereas polymorphonuclear and NK cells have only a minor role. Conclusions Despite the use of an immunomodulatory treatment, immunodeficient NOD/SCID mice are still able to mount substantial innate responses that seem to be correlated with parasite clearance. Those results bring new insights on the ability of innate immunity from immunodeficient mice to control xenografts of cells of human origin and human pathogens.