Sensors (Nov 2022)

A Linear-Power-Regulated Wireless Power Transfer Method for Decreasing the Heat Dissipation of Fully Implantable Microsystems

  • Haochuan Wang,
  • Chenglong Zhu,
  • Wenkai Jin,
  • Junjie Tang,
  • Zhanxiong Wu,
  • Keming Chen,
  • Hui Hong

DOI
https://doi.org/10.3390/s22228765
Journal volume & issue
Vol. 22, no. 22
p. 8765

Abstract

Read online

Magnetic coupling resonance wireless power transfer can efficiently provide energy to intracranial implants under safety constraints, and is the main way to power fully implantable brain–computer interface systems. However, the existing maximum efficiency tracking wireless power transfer system is aimed at optimizing the overall system efficiency, but the efficiency of the secondary side is not optimized. Moreover, the parameters of the transmitter and the receiver change nonlinearly in the power control process, and the efficiency tracking mainly depends on wireless communication. The heat dissipation caused by the unoptimized receiver efficiency and the wireless communication delay in power control will inevitably affect neural activity and even cause damage, thus affecting the results of neuroscience research. Here, a linear-power-regulated wireless power transfer method is proposed to realize the linear change of the received power regulation and optimize the receiver efficiency, and a miniaturized linear-power-regulated wireless power transfer system is developed. With the received power control, the efficiency of the receiver is increased to more than 80%, which can significantly reduce the heating of fully implantable microsystems. The linear change of the received power regulation makes the reflected impedance in the transmitter change linearly, which will help to reduce the dependence on wireless communication and improve biological safety in received power control applications.

Keywords