Nature Communications (Nov 2022)

Faecal microbiome-based machine learning for multi-class disease diagnosis

  • Qi Su,
  • Qin Liu,
  • Raphaela Iris Lau,
  • Jingwan Zhang,
  • Zhilu Xu,
  • Yun Kit Yeoh,
  • Thomas W. H. Leung,
  • Whitney Tang,
  • Lin Zhang,
  • Jessie Q. Y. Liang,
  • Yuk Kam Yau,
  • Jiaying Zheng,
  • Chengyu Liu,
  • Mengjing Zhang,
  • Chun Pan Cheung,
  • Jessica Y. L. Ching,
  • Hein M. Tun,
  • Jun Yu,
  • Francis K. L. Chan,
  • Siew C. Ng

DOI
https://doi.org/10.1038/s41467-022-34405-3
Journal volume & issue
Vol. 13, no. 1
pp. 1 – 8

Abstract

Read online

Here, using fecal metagenomics data of 2,320 individuals, the authors develop a microbiome-based machine learning approach showing high accuracy for multi-class disease diagnosis, highlighting its potential application in improving noninvasive diagnostics and monitor responses to therapy.