Quantum (Jun 2021)

Quantum marginal problem and incompatibility

  • Erkka Haapasalo,
  • Tristan Kraft,
  • Nikolai Miklin,
  • Roope Uola

DOI
https://doi.org/10.22331/q-2021-06-15-476
Journal volume & issue
Vol. 5
p. 476

Abstract

Read online

One of the basic distinctions between classical and quantum mechanics is the existence of fundamentally incompatible quantities. Such quantities are present on all levels of quantum objects: states, measurements, quantum channels, and even higher order dynamics. In this manuscript, we show that two seemingly different aspects of quantum incompatibility: the quantum marginal problem of states and the incompatibility on the level of quantum channels are in many-to-one correspondence. Importantly, as incompatibility of measurements is a special case of the latter, it also forms an instance of the quantum marginal problem. The generality of the connection is harnessed by solving the marginal problem for Gaussian and Bell diagonal states, as well as for pure states under depolarizing noise. Furthermore, we derive entropic criteria for channel compatibility, and develop a converging hierarchy of semi-definite programs for quantifying the strength of quantum memories.