Genetics Selection Evolution (Jan 2023)
A computationally efficient method for approximating reliabilities in large-scale single-step genomic prediction
Abstract
Abstract Background In this study, computationally efficient methods to approximate the reliabilities of genomic estimated breeding values (GEBV) in a single-step genomic prediction model including a residual polygenic (RPG) effect are described. In order to calculate the reliabilities of the genotyped animals, a single nucleotide polymorphism best linear unbiased prediction (SNPBLUP) or a genomic BLUP (GBLUP), was used, where two alternatives to account for the RPG effect were tested. In the direct approach, the genomic model included the RPG effect, while in the blended method, it did not but an index was used to weight the genomic and pedigree-based BLUP (PBLUP) reliabilities. In order to calculate the single-step GBLUP reliabilities for the breeding values for the non-genotyped animals, a simplified weighted-PBLUP model that included a general mean and additive genetic effects with weights accounting for the non-genomic and genomic information was used. We compared five schemes for the weights. Two datasets, i.e., a small (Data 1) one and a large (Data 2) one were used. Results For the genotyped animals in Data 1, correlations between approximate reliabilities using the blended method and exact reliabilities ranged from 0.993 to 0.996 across three lactations. The slopes observed by regressing the reliabilities of GEBV from the exact method on those from the blended method were 1.0 for all three lactations. For Data 2, the correlations and slopes ranged, respectively, from 0.980 to 0.986 and from 0.91 to 0.96, and for the non-genotyped animals in Data 1, they ranged, respectively, from 0.987 to 0.994 and from 0.987 to 1, which indicate that the approximations were in line with the exact results. The best approach achieved correlations of 0.992 to 0.994 across lactations. Conclusions Our results demonstrate that the approximated reliabilities calculated using our proposed approach are in good agreement with the exact reliabilities. The blended method for the genotyped animals is computationally more feasible than the direct method when RPG effects are included, particularly for large-scale datasets. The approach can serve as an effective strategy to estimate the reliabilities of GEBV in large-scale single-step genomic predictions.