Neuropsychiatric Disease and Treatment (Jan 2020)

Neuroprotective effect and mechanism of baicalin on Parkinson’s disease model induced by 6-OHDA

  • Tu L,
  • Wu ZY,
  • Yang XL,
  • Zhang Q,
  • Gu R,
  • Wang Q,
  • Tian T,
  • Yao H,
  • Qu X,
  • Tian JY

Journal volume & issue
Vol. Volume 15
pp. 3615 – 3625

Abstract

Read online

Li Tu,1 Zhuo-Yu Wu,2 Xiu-Lin Yang,3 Qian Zhang,3 Ran Gu,3 Qian Wang,2 Tian Tian,2 Huan Yao,3 Xiang Qu,3 Jin-Yong Tian2,3 1Department of General Medical, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China; 2Department of Neurology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China; 3Department of Emergency, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, ChinaCorrespondence: Jin-Yong TianDepartment of Emergency, Guizhou Provincial People’s Hospital, 83 Zhongshan East Road, Guiyang 550002, Guizhou, ChinaTel +86 851 8593 7194Email [email protected]: This research was aimed to investigate the effects of baicalin on 6-hydroxydopamine (6-OHDA)-induced rat model of Parkinson’s disease (PD) and the main mechanism of baicalin based on metabolomics.Methods: The rat model of PD was induced by 6-OHDA. The protective effects of baicalin on rat model of PD were evaluated by open field test and rotarod test. The anti-PD efficacy of baicalin was evaluated by examining the morphologic changes of neurons and the level of monoamine neurotransmitters in the striatum, the number and morphology of tyrosine hydroxylase (TH)-positive neurons, and oxidative stress. Combined with metabolomics methods, the pharmacodynamic mechanism of baicalin on PD pathogenesis was also explored.Results: Baicalin treatment improved the rod time and voluntary movement in rat model of PD (P<0.05) by the open field test and rotarod test. In addition, baicalin also protected from oxidative stress injury (P<0.05), and regulated the content of monoamine neurotransmitters dopamine, 3,4-dihydroxyphenylacetic acid, 5-hydroxytryptamine, and 5-hydroxyindoleacetic acid (P<0.05) and the number and morphology of TH-positive cells in 6-OHDA-induced PD model rats. By metabolomics, multivariate statistical analysis, and receiver operating characteristic curve analysis, we found that two metabolites N-acetyl aspartic acid and glutamic acid had a good diagnostic value. Quantitative analysis of metabolites showed a regulatory function of baicalin.Conclusion: Baicalin has significant protective effect on 6-OHDA-induced PD rats, which may play a protective role through an antioxidant, promoting the release of neurotransmitters and regulating the metabolism of N-acetyl aspartate and glutamate.Keywords: Parkinson’s disease, neurotransmitter, baicalin, metabolomics

Keywords