Scientific Reports (Jun 2017)
C60 as fine fillers to improve poly(phenylene sulfide) electrical conductivity and mechanical property
Abstract
Abstract Electrical conductive poly(phenylene sulfide) (PPS)/fullerene (C60) composites were prepared by 1-chlornaphthalene blending method, and the interface effects of C60 and PPS on PPS/C60 properties were characterized. C60 is an excellent nanofiller for PPS, and 2 wt% PPS/C60 composite displayed the optimal conductivity which achieved 1.67 × 10−2 S/cm. However, when C60 concentration reached 2 wt%, the breaking strength and tensile modulus of PPS/C60 fiber achieved maximum 290 MPa and 605 MPa, and those values were 7.72 and 11.2 times as that of pure PPS. The excellent conductive and mechanical properties of PPS/C60 were attributed to the heterogeneous nucleation of C60 during PPS crystallization, formation of a large number of covalent bond by main C60-thiol adducts and minor C60-ArCl alkylation between C60 outer surface and PPS matrix. At same time, PPS/C60 thermal properties were also investigated.