Agronomy (Aug 2024)

Microbial Utilization to Nurture Robust Agroecosystems for Food Security

  • Muhammad Qadir,
  • Anwar Hussain,
  • Amjad Iqbal,
  • Farooq Shah,
  • Wei Wu,
  • Huifeng Cai

DOI
https://doi.org/10.3390/agronomy14091891
Journal volume & issue
Vol. 14, no. 9
p. 1891

Abstract

Read online

In the context of anthropogenic evolution, various sectors have been exploited to satisfy human needs and demands, often pushing them to the brink of deterioration and destruction. One such sector is agrochemicals, which have been increasingly employed to achieve higher yields and bridge the gap between food supply and demand. However, extensive and prolonged use of chemical fertilizers most often degrades soil structure over time, resulting in reduced yields and consequently further exacerbating the disparity between supply and demand. To address these challenges and ensure sustainable agricultural production, utilization of microorganisms offers promising solutions. Hence, microorganisms, particularly effective microorganisms (EMs) and plant growth-promoting microbes (PGPMs), are pivotal in agricultural biomes. They enhance crop yields through active contribution to crucial biological processes like nitrogen fixation and phytohormone synthesis, making vital nutrients soluble and acting as natural enemies against pests and pathogens. Microbes directly enhance soil vigor and stimulate plant growth via the exudation of bioactive compounds. The utilization of EMs and PGPMs reduces the need for chemical inputs, leading to lower costs and reduced environmental pollutants. Furthermore, beneficial soil microflora produces growth-related metabolites and phytohormones that augment plant growth and support stress resilience. Microbes also help plants tolerate various abiotic stresses, including metal stress, salt stress, and drought stress, through various mechanisms. Understanding the interactions and activities of microorganisms provides valuable insights into their potential use to manage stress in plants. Thus, by leveraging the full potential of microorganisms, we can develop healthier agroecosystems that contribute sustainably to meet the growing global food demands.

Keywords