BMC Cancer (Nov 2022)

Broad-spectrum antibiotics associated gut microbiome disturbance impairs T cell immunity and promotes lung cancer metastasis: a retrospective study

  • Ke Xu,
  • Jixu Cai,
  • Jun Xing,
  • Xu Li,
  • Beishou Wu,
  • Zhuxian Zhu,
  • Ziqiang Zhang

DOI
https://doi.org/10.1186/s12885-022-10307-x
Journal volume & issue
Vol. 22, no. 1
pp. 1 – 14

Abstract

Read online

Abstract Background Gut microbiome has been linked to a regulatory role in cancer progression. However, whether broad-spectrum antibiotics (ATB) associated gut microbiome dysbiosis contributes to an impaired T cell immune function, and ultimately promotes lung cancer metastasis is not well known. Methods In this study, a retrospective analysis was performed in a cohort of 263 patients initially diagnosed with non-small cell lung cancer (NSCLC) patients, including the ATB group (patients with broad-spectrum antibiotics treatment) (n = 124), and non-ATB group (n = 139) as control. ATB patients were prescribed ATB for over 5 days within 30 days prior to the collection of blood and fecal specimens and followed surgical treatment or first-line therapy. T cell immune function and metastasis-free survival (MFS) were evaluated between the two groups. Gut microbiota was evaluated by 16S rDNA sequencing. The predictive value of T cell immunity for MFS was evaluated by ROC analysis and Cox regression analysis. Results Our results suggest that broad-spectrum antibiotics (ATB) impair T cell immune function in patients with either early-stage or advanced NSCLC, which likely contribute to the promotion of lung cancer metastasis. Results of the survival analysis show that metastasis-free survival (MFS) is significantly shorter in the ATB patients than that in the non-ATB patients with stage III NSCLC. The 16S rDNA sequencing shows that ATB administration contributes to a significant dysbiosis of the composition and diversity of gut microbiota. Moreover, ROC analysis results of CD4 (AUC 0.642, p = 0.011), CD8 (AUC was 0.729, p < 0.001), CD16 + 56 + (AUC 0.643, p = 0.003), and the combination of CD4, CD8 and CD16 + 56+ (AUC 0.810, p < 0.001), or Cox regression analysis results of CD4 (HR 0.206, p < 0.001), CD8 (HR 0.555, p = 0.009), which is likely regulated by ATB administration, have significantly predictive values for MFS. Conclusion These results provide evidence of gut microbiome disturbance due to ATB administration is involved in the regulation of T cell immunity, and their predictive value for the tumor metastasis in lung cancer patients. Thus, gut microbiota may serve as a therapeutic target for lung cancer. Consequently, caution should be exercised before the long-term administration of broad-spectrum antibiotics in cancer patients.

Keywords