Algorithms (Apr 2022)

A Fuzzy Grouping Genetic Algorithm for Solving a Real-World Virtual Machine Placement Problem in a Healthcare-Cloud

  • Nawaf Alharbe,
  • Abeer Aljohani,
  • Mohamed Ali Rakrouki

DOI
https://doi.org/10.3390/a15040128
Journal volume & issue
Vol. 15, no. 4
p. 128

Abstract

Read online

Due to the large-scale development of cloud computing, data center electricity energy costs have increased rapidly. Energy saving has become a major research direction of virtual machine placement problems. At the same time, the multi-dimensional resources on the cloud should be used in a balanced manner in order to avoid resources waste. In this context, this paper addresses a real-world virtual machine placement problem arising in a Healthcare-Cloud (H-Cloud) of hospitals chain in Saudi Arabia, considering server power consumption and resource utilization. As a part of optimizing both objectives, user service quality has to be taken into account. In fact, user quality of service (QoS) is also considered by measuring the Service-Level Agreement (SLA) violation rate. This problem is modeled as a multi-objective virtual machine placement problem with the objective of minimizing power consumption, resource utilization, and SLA violation rate. To solve this challenging problem, a fuzzy grouping genetic algorithm (FGGA) is proposed. Considering that multiple optimization objectives may have different degrees of influence on the problem, the fitness function of the proposed algorithm is calculated with fuzzy logic-based function. The experimental results show the effectiveness of the proposed algorithm.

Keywords