Engenharia Agrícola (Sep 2008)

Computational modeling for irrigated agriculture planning. Part II: risk analysis Modelagem computacional para planejamento em agricultura irrigada: Parte II - Análise de risco

  • João C. F. Borges Júnior,
  • Paulo A. Ferreira,
  • Camilo L. T. Andrade,
  • Bettina Hedden-Dunkhorst

DOI
https://doi.org/10.1590/S0100-69162008000300009
Journal volume & issue
Vol. 28, no. 3
pp. 483 – 493

Abstract

Read online

Techniques of evaluation of risks coming from inherent uncertainties to the agricultural activity should accompany planning studies. The risk analysis should be carried out by risk simulation using techniques as the Monte Carlo method. This study was carried out to develop a computer program so-called P-RISCO for the application of risky simulations on linear programming models, to apply to a case study, as well to test the results comparatively to the @RISK program. In the risk analysis it was observed that the average of the output variable total net present value, U, was considerably lower than the maximum U value obtained from the linear programming model. It was also verified that the enterprise will be front to expressive risk of shortage of water in the month of April, what doesn't happen for the cropping pattern obtained by the minimization of the irrigation requirement in the months of April in the four years. The scenario analysis indicated that the sale price of the passion fruit crop exercises expressive influence on the financial performance of the enterprise. In the comparative analysis it was verified the equivalence of P-RISCO and @RISK programs in the execution of the risk simulation for the considered scenario.Técnicas de avaliação de riscos procedentes de incertezas inerentes à atividade agrícola devem acompanhar os estudos de planejamento. A análise de risco pode ser desempenhada por meio de simulação, utilizando técnicas como o método de Monte Carlo. Neste trabalho, teve-se o objetivo de desenvolver um programa computacional, denominado P-RISCO, para utilização de simulações de risco em modelos de programação linear, aplicar a um estudo de caso e testar os resultados comparativamente ao programa @RISK. Na análise de risco, observou-se que a média da variável de saída, valor presente líquido total (U), foi consideravelmente inferior ao valor máximo de U obtido no modelo de programação linear. Constatou-se, também, que o empreendimento estará frente a expressivo risco de escassez de água no mês de abril, o que não ocorre para o padrão de cultivo obtido com a minimização do requerimento de irrigação nos meses de abril dos quatro anos. A análise de cenário indicou que o preço de venda para a cultura do maracujá exerce expressiva influência sobre o desempenho financeiro do empreendimento. Na avaliação comparativa, verificou-se equivalência dos programas P-RISCO e @RISK na condução da simulação de risco para o cenário considerado.

Keywords