Cellular Physiology and Biochemistry (Mar 2014)

Neurogenin 2 Converts Mesenchymal Stem Cells into a Neural Precursor Fate and Improves Functional Recovery after Experimental Stroke

  • Feng Cheng,
  • Xiao Cheng Lu,
  • Huai Yong Hao,
  • Xue Liang Dai,
  • Teng Da Qian,
  • Bao Sheng Huang,
  • Lin Jun Tang,
  • Wan Yu,
  • Li Xin Li

DOI
https://doi.org/10.1159/000358657
Journal volume & issue
Vol. 33, no. 3
pp. 847 – 858

Abstract

Read online

Background: Neurogenin2 (Ngn2) is a proneural gene that directs neuronal differentiation of progenitor cells during development. Here, we investigated whether Ngn2 can reprogram MSCs to adopt a neural precursor fate and enhance the therapeutic effects of MSCs after experimental stroke. Methods: In vitro, MSCs were transfected with lenti-GFP or lenti-Ngn2. Following neuronal induction, cells were identified by immunocytochemistry, Western blot and electrophysiological analyses. In a stroke model induced by transient right middle cerebral artery occlusion (MCAO), PBS, GFP-MSCs or Ngn2-MSCs were injected 1 day after MCAO. Behavioral tests, neurological and immunohistochemical assessments were performed. Results: In vitro, Ngn2-MSCs expressed neural stem cells markers (Pax6 and nestin) and lost the potential to differentiate into mesodermal cell types. Following neural induction, Ngn2-MSCs expressed higher levels of neuron-specific proteins MAP2, Tuj1 and NeuN, and also expressed voltage-gated Na+ channel, which was absent in GFP-MSCs. In vivo, after transplantation, Ngn2-MSCs significantly reduced apoptotic cells, decreased infarct volume, and increased the expression of VEGF and BDNF. Finally, Ngn2-MSCs treated animals showed the highest functional recovery among the three groups. Conclusions: Ngn2 was sufficient to convert MSCs into a neural precursor fate and transplantation of Ngn2-MSCs was advantageous for the treatment of stroke rats.

Keywords