Molecular Neurodegeneration (Feb 2007)

APP-BP1 inhibits Aβ42 levels by interacting with Presenilin-1

  • Neve Rachael L,
  • McPhie Donna L,
  • Bodles Angela M,
  • Chen Yuzhi,
  • Mrak Robert E,
  • Griffin W Sue T

DOI
https://doi.org/10.1186/1750-1326-2-3
Journal volume & issue
Vol. 2, no. 1
p. 3

Abstract

Read online

Abstract Background The β-amyloid precursor protein (APP) is sequentially cleaved by the β- and then γ-secretase to generate the amyloid β-peptides Aβ40 and Aβ42. Increased Aβ42/Aβ40 ratios trigger amyloid plaque formations in Alzheimer's disease (AD). APP binds to APP-BP1, but the biological consequence is not well understood. Results We report that when the endogenous APP-BP1 was suppressed by small interfering RNAs (siRNAs), cell-associated Aβ42 was dramatically increased in APP695 expressing primary neurons. The accumulation of Aβ42 was accompanied by significant increases in APP and APP-CTF in APP-BP1 siRNA expressing neurons. In contrast, APP-BP1 overexpression in primary neurons significantly decreased the levels of Aβ and endogenous APP but not APLPs. We also investigated the potential mechanism of APP-BP1-mediated APP processing. APP-BP1 co-precipitated with Presenilin-1 (PS1) in native rat brain extracts, co-migrated with the γ-secretase components in brain membrane extracts in glycerol gradient centrifugation, and colocalized in primary neurons. Further, the endogenous PS1-CTF was significantly downregulated by APP-BP1 expression. Conclusion Our data suggest that APP-BP1 may inhibit Aβ42 production by interacting with PS1 under physiological conditions.