Nanomaterials (Feb 2023)

Cluster-Assembled Zirconia Substrates Accelerate the Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells

  • Sara Castiglioni,
  • Laura Locatelli,
  • Alessandra Cazzaniga,
  • Francesca Maria Orecchio,
  • Tommaso Santaniello,
  • Claudio Piazzoni,
  • Lionel Bureau,
  • Francesca Borghi,
  • Paolo Milani,
  • Jeanette A. Maier

DOI
https://doi.org/10.3390/nano13050801
Journal volume & issue
Vol. 13, no. 5
p. 801

Abstract

Read online

Due to their high mechanical strength and good biocompatibility, nanostructured zirconia surfaces (ns-ZrOx) are widely used for bio-applications. Through supersonic cluster beam deposition, we produced ZrOx films with controllable roughness at the nanoscale, mimicking the morphological and topographical properties of the extracellular matrix. We show that a 20 nm ns-ZrOx surface accelerates the osteogenic differentiation of human bone marrow-derived MSCs (bMSCs) by increasing the deposition of calcium in the extracellular matrix and upregulating some osteogenic differentiation markers. bMSCs seeded on 20 nm ns-ZrOx show randomly oriented actin fibers, changes in nuclear morphology, and a reduction in mitochondrial transmembrane potential when compared to the cells cultured on flat zirconia (flat-ZrO2) substrates and glass coverslips used as controls. Additionally, an increase in ROS, known to promote osteogenesis, was detected after 24 h of culture on 20 nm ns-ZrOx. All the modifications induced by the ns-ZrOx surface are rescued after the first hours of culture. We propose that ns-ZrOx-induced cytoskeletal remodeling transmits signals generated by the extracellular environment to the nucleus, with the consequent modulation of the expression of genes controlling cell fate.

Keywords