Hydrology (Sep 2024)
Hydro Geochemical Characteristics and Mineralization Process of Groundwater in the Phosphatic Basin of Gafsa, Southwestern Tunisia
Abstract
The present study examines the water quality in the Quaternary Mio-Plio-Quaternary aquifer of the mining basin of Gafsa using a hydrochemical approach and multivariate statistical methods, to assess groundwater mineralization processes. Results from the analysis of groundwater quality collected during the winter (January 2020) and summer (June 2021) seasons reveal a pronounced stability in geochemical parameters, emphasizing a noteworthy consistency in water composition between the two seasons, with the dominance of the Na-Ca-Mg-SO4-Cl facies, in addition to the fact that all year round these concentrations are beyond their respective WHO limits. Despite the intensive extractive and transformation phosphate industry, the prolonged interaction of water with geological formations is the primary factor controlling their high mineralization. This results from the dissolution of carbonates (calcite, dolomite), gypsum, and halite. The results of the PCA represent two correlation classes. Class 1 comprises major elements sulfate, chloride, sodium, magnesium, and calcium strongly correlated with electrical conductivity (EC) and total dissolved solids (TDS). This correlation is indicative of the water mineralization process. Class 2 includes major elements nitrate and potassium weakly correlated with (TDS) and (EC) As regards heavy metals, their concentrations fall consistently below their respective potability standards established by the WHO across all water sampling points. Meanwhile, fluoride (F-) concentrations exhibited values ranging from (1.6 mg·L−1 to 2.9 mg·L−1) in the winter of January 2020 and (1 to 2.9 mg·L−1) in the summer of June 2021, surpassing its WHO limit (1.5 mg·L−1) in almost all water samples. These findings allow us to conclude that the high mineralization of these waters is acquired due to the dissolution of carbonates (calcite, dolomite), gypsum, and halite due to their prolonged interaction with the geological formations. The deterioration of groundwater quality in the Gafsa mining basin associated with phosphate extraction and processing activities appears to be primarily due to the intensive exploitation of deep-water resources.
Keywords