Frontiers in Cardiovascular Medicine (Jul 2023)
The evolution of technical prerequisites and local boundary conditions for optimization of mitral valve interventions—Emphasis on skills development and institutional risk performance
Abstract
This viewpoint report describes how the evolution of transcatheter mitral valve intervention (TMVI) is influenced by lessons learned from three evolutionary tracks: (1) the development of treatment from mitral valve surgery (MVS) to transcutaneous procedures; (2) the evolution of biomedical engineering for research and development resulting in predictable and safe clinical use; (3) the adaptation to local conditions, impact of transcatheter aortic valve replacement (TAVR) experience and creation of infrastructure for skills development and risk management. Thanks to developments in computer science and biostatistics, an increasing number of reports regarding clinical safety and effectiveness is generated. A full toolbox of techniques, devices and support technology is now available, especially in surgery. There is no doubt that the injury associated with a minimally invasive access reduces perioperative risks, but it may affect the effectiveness of the treatment due to incomplete correction. Based on literature, solutions and performance standards are formulated with an emphasis in technology and positive outcome. Despite references to Heart Team decision making, boundary conditions such as hospital infrastructure, caseload, skills training and perioperative risk management remain underexposed. The role of Biomedical Engineering is exclusively defined by the Research and Development (R&D) cycle including the impact of human factor engineering (HFE). Feasibility studies generate estimations of strengths and safety limitations. Usability testing reveals user friendliness and safety margins of clinical use. Apart from a certification requirement, this information should have an impact on the definition of necessary skills levels and consequent required training. Physicians Preference Testing (PPT) and use of a biosimulator are recommended. The example of the interaction between two Amsterdam heart centers describes the evolution of a professional ecosystem that can facilitate innovation. Adaptation to local conditions in terms of infrastructure, referrals and reimbursement, appears essential for the evolution of a complete mitral valve disease management program. Efficacy of institutional risk management performance (IRMP) and sufficient team skills should be embedded in an appropriate infrastructure that enables scale and offers complete and safe solutions for mitral valve disease. The longstanding evolution of mitral valve therapies is the result of working devices embedded in an ecosystem focused on developing skills and effective risk management actions.
Keywords