Energies (Mar 2023)
Optimal Axial-Probe Design for Foucault-Current Tomography: A Global Optimization Approach Based on Linear Sampling Method
Abstract
This paper is concerned with the optimal design of axial probes, commonly used in the Non-Destructive Testing (NDT) of tube boiling in steam generators. The goal is to improve the low-frequency Foucault-current imaging of these deposits by designing a novel probe. The approach uses a combination of an inverse problem solver with global optimization to find the optimal probe characteristics by minimizing a function of merit defined using image processing techniques. The evaluation of the function of merit is computationally intensive and a surrogate optimization approach is used, incorporating a multi-particle search algorithm. The proposed design is validated through numerical experiments and aims to improve the accuracy and efficiency of identifying deposits in steam generator tubes.
Keywords