Molecules (Nov 2017)

Influence of Amlodipine Enantiomers on Human Microsomal Cytochromes P450: Stereoselective Time-Dependent Inhibition of CYP3A Enzyme Activity

  • Kristyna Krasulova,
  • Ondrej Holas,
  • Pavel Anzenbacher

DOI
https://doi.org/10.3390/molecules22111879
Journal volume & issue
Vol. 22, no. 11
p. 1879

Abstract

Read online

Amlodipine (AML) is available as a racemate, i.e., a mixture of R- and S-enantiomers. Its inhibitory potency towards nine cytochromes P450 (CYP) was studied to evaluate the drug–drug interactions between the enantiomers. Enzyme inhibition was evaluated using specific CYP substrates in human liver microsomes. With CYP3A, both enantiomers exhibited reversible and time-dependent inhibition. S-AML was a stronger reversible inhibitor of midazolam hydroxylation: the Ki values of S- and R-AML were 8.95 µM, 14.85 µM, respectively. Computational docking confirmed that the enantiomers interact differently with CYP3A: the binding free energy of S-AML in the active site was greater than that for R-AML (−7.6- vs. −6.7 kcal/mol). Conversely, R-AML exhibited more potent time-dependent inhibition of CYP3A activity (KI 8.22 µM, Kinact 0.065 min−1) than S-AML (KI 14.06 µM, Kinact 0.041 min−1). R-AML was also a significantly more potent inhibitor of CYP2C9 (Ki 12.11 µM/S-AML 21.45 µM) and CYP2C19 (Ki 5.97 µM/S-AML 7.22 μM. In conclusion, results indicate that clinical use of S-AML has an advantage not only because of greater pharmacological effect, but also because of fewer side effects and drug–drug interactions with cytochrome P450 substrates due to absence of R-AML.

Keywords