Water Science and Technology (Jun 2021)

Synergistic photocatalytic activity of a combination of carbon nanotubes-graphene-nickel foam nanocomposites enhanced by dielectric barrier discharge plasma technology for water purification

  • Qihui Xu,
  • Shuaikang Fang,
  • Yin Chen,
  • Jae Kwang Park,
  • Chao Pan,
  • Yongjun Shen,
  • Na Zhu,
  • Huifang Wu

DOI
https://doi.org/10.2166/wst.2021.030
Journal volume & issue
Vol. 83, no. 11
pp. 2762 – 2777

Abstract

Read online

Degradation activity of plasma catalysis between dielectric barrier discharge (DBD) and carbon nanotubes-graphene-nickel foam (CNTs-G-Nif) has been studied in treatment of dye wastewater. CNTs-G-Nif was prepared through a two-step chemical vapor deposition (CVD) approach. The composite has been characterized by different techniques such as X-ray diffraction (XRD), scanning electron microscope (SEM) and Raman spectroscopy. SEM results showed that the Nif as the growth substrate was evenly wrapped by G and then CNTs were successfully grown on G as the support. The growth mechanism of composite was proposed. The possible coupled catalytic mechanism between DBD and CNTs-G-Nif were addressed. In addition, the modification on G-Nif was found by SEM during the discharge process in liquid phase. And the modification mechanism of DBD plasma (DBDP) acting on composites was discussed. Finally, by means of analyses of ultraviolet-visible (UV-Vis) spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS), the general degradation pathway and stepwise degradation pathways of alizarin green (AG) were proposed in detail. HIGHLIGHTS A novel degradation system DBD plasma/CNTs-G-Nif is proposed.; The new model of coupling factor is put forward to evaluate the degradation effect.; DBD plasma has modification on G-Nif in degradation of dye wastewater.; Comprehensive mechanisms of preparing,coupling,modifying and degrading are explored.;

Keywords