Applied Sciences (Jul 2024)
Fracture Mechanism and Damage Constitutive Model of Freeze–Thaw Fissured Granite Subjected to Fatigue Loading
Abstract
The failure of rock in cold regions due to repeated freeze–thaw (F-T) cycles and periodic load-induced fatigue damage presents a significant challenge. This study investigates the evolution of the multi-scale structure of fractured granite under combined freeze–thaw (F-T) cycles and periodic loading and develops a constitutive damage model. The results indicate that after F-T cycles, network cracks develop around pre-existing cracks, accompanied by block-like spalling. After applying the fatigue load, the nuclear magnetic resonance (NMR) T2 spectrum shifts to the right, significantly increasing the amplitude of the third peak. The freeze–thaw process induces a “liquid–solid” phase transition, weakening the original pore structure of the rocks and leading to meso-damage accumulation. The pores in fractured granite progressively enlarge and interconnect, reducing the rock’s load-bearing capacity and fatigue resistance. The combined effects of F-T cycles and periodic loading induce particle movement and alter fracture modes within the rock, subsequently affecting its macro-damage characteristics. The theoretical curves of the constitutive model align with the experimental data. The findings can serve as a theoretical reference for preventing and controlling engineering disasters in fractured rock masses in cold regions.
Keywords