Cell Reports (Sep 2023)

Comprehensive synergy mapping links a BAF- and NSL-containing “supercomplex” to the transcriptional silencing of HIV-1

  • Zichong Li,
  • Steven G. Deeks,
  • Melanie Ott,
  • Warner C. Greene

Journal volume & issue
Vol. 42, no. 9
p. 113055

Abstract

Read online

Summary: Host repressors mediate HIV latency, but how they interactively silence the virus remains unclear. Here, we develop “reiterative enrichment and authentication of CRISPRi targets for synergies (REACTS)” to probe the genome for synergies between HIV transcription repressors. Using eight known host repressors as queries, we identify 32 synergies involving eleven repressors, including BCL7C, KANSL2, and SIRT2. Overexpression of these three proteins reduces HIV reactivation in Jurkat T cells and in CD4 T cells from people living with HIV on antiretroviral therapy (ART). We show that the BCL7C-containing BAF complex and the KANSL2-containing NSL complex form a “supercomplex” that increases inhibitory histone acetylation of the HIV long-terminal repeat (LTR) and its occupancy by the short variant of the acetyl-lysine reader Brd4. Collectively, we provide a validated platform for defining gene synergies genome wide, and the BAF-NSL “supercomplex” represents a potential target for overcoming HIV rebound after ART cessation.

Keywords