AIP Advances (Apr 2018)

Evolution of optical properties and band structure from amorphous to crystalline Ga2O3 films

  • Fabi Zhang,
  • Haiou Li,
  • Yi-Tao Cui,
  • Guo-Ling Li,
  • Qixin Guo

DOI
https://doi.org/10.1063/1.5021867
Journal volume & issue
Vol. 8, no. 4
pp. 045112 – 045112-7

Abstract

Read online

The optical properties and band structure evolution from amorphous to crystalline Ga2O3 films was investigated in this work. Amorphous and crystalline Ga2O3 films were obtained by changing the growth substrate temperatures of pulsed laser deposition and the crystallinity increase with the rising of substrate temperature. The bandgap value and ultraviolet emission intensity of the films increase with the rising of crystallinity as observed by means of spectrophotometer and cathodoluminescence spectroscopy. Abrupt bandgap value and CL emission variations were observed when amorphous to crystalline transition took place. X-ray photoelectron spectroscopy core level spectra reveal that more oxygen vacancies and disorders exist in amorphous Ga2O3 film grown at lower substrate temperature. The valence band spectra of hard X-ray photoelectron spectroscopy present the main contribution from Ga 4sp for crystalline film deposited at substrate temperature of 500 oC, while extra subgap states has been observed in amorphous film deposited at 300 oC. The oxygen vacancy and the extra subgap density of states are suggested to be the parts of origin of bandgap and CL spectra variations. The experimental data above yields a realistic picture of optical properties and band structure variation for the amorphous to crystalline transition of Ga2O3 films.