Cardiovascular Ultrasound (Nov 2020)
Assessment of left ventricular systolic function by non-invasive pressure-strain loop area in young male strength athletes
Abstract
Abstract Background The health of athletes has been recognized as a worldwide public concern with more reported sudden cardiac deaths (SCD). Therefore, early detection of abnormal heart function in athletes can help reduce the risk of exercise. A novel valid non-invasive method to evaluate left ventricular (LV) myocardial work (MW) using LV pressure-strain loop (PSL), was used in this paper to explore LV systolic function in young male strength athletes. Methods Thirty-six professional young male strength athletes (the athlete group) and 32 healthy, age-matched young men (the control group) were involved in the study. The LVMW parameters were calculated as the area of PSL by two-dimensional speckle tracking echocardiography (2D-STE) and peak systolic LV pressure. The differences between two groups of data and the predictive efficacy of MW parameters for LV systolic function were analyzed. Results The athlete group had significantly higher values of global wasted myocardial work (GWW) and peak strain dispersion (PSD) than did the control group (P0.05). Due to the proportion of GWW and GCW, statistically significant reduction was found in global myocardial work efficiency (GWE) in the athlete group. Conventional echocardiography parameters were well correlated with GWW and GWE (P<0.05). The best predictor of LV myocardial contractile performance in the athletes using receiver operating characteristic curve (ROC) was GWE, with the area under ROC (AUC) of 0.733, sensitivity of 83.3% and specificity of 59.4%. Conclusions Subclinical changes have appeared in the hearts of young male strength athletes after long-term intensive exercise and LVMW parameters by PSL play an important role in the evaluation of athlete’s LV contractile performance.
Keywords