PLoS ONE (Jan 2016)

Functional Study of Ectodysplasin-A Mutations Causing Non-Syndromic Tooth Agenesis.

  • Wenjing Shen,
  • Yue Wang,
  • Yang Liu,
  • Haochen Liu,
  • Hongshan Zhao,
  • Guozhong Zhang,
  • Malcolm L Snead,
  • Dong Han,
  • Hailan Feng

DOI
https://doi.org/10.1371/journal.pone.0154884
Journal volume & issue
Vol. 11, no. 5
p. e0154884

Abstract

Read online

Recent studies have demonstrated that ectodysplasin-A (EDA) mutations are associated with non-syndromic tooth agenesis. Indeed, we were the first to report three novel EDA mutations (A259E, R289C and R334H) in sporadic non-syndromic tooth agenesis. We studied the mechanism linking EDA mutations and non-syndromic tooth agenesis in human embryonic kidney 293T cells and mouse ameloblast-derived LS8 cells transfected with mutant isoforms of EDA. The receptor binding capability of the mutant EDA1 protein was impaired in comparison to wild-type EDA1. Although the non-syndromic tooth agenesis-causing EDA1 mutants possessed residual binding capability, the transcriptional activation of the receptor's downstream target, nuclear factor κB (NF-κB), was compromised. We also analyzed the changes of selected genes in other signaling pathways, such as WNT and BMP, after EDA mutation. We found that non-syndromic tooth agenesis-causing EDA1 mutant proteins upregulate BMP4 (bone morphogenetic protein 4) mRNA expression and downregulate WNT10A and WNT10B (wingless-type MMTV integration site family member 10A and 10B) mRNA expression. Our results indicated that non-syndromic tooth agenesis causing EDA mutations (A259E, R289C and R334H) were loss-of-function, and suggested that EDA may regulate the expression of WNT10A, WNT10B and BMP4 via NF-κB during tooth development. The results from our study may help to understand the molecular mechanism linking specific EDA mutations with non-syndromic tooth agenesis.