Proteome Science (Mar 2018)

Effects of the complete replacement of fish oil with linseed oil on growth, fatty acid composition, and protein expression in the Chinese mitten crab (Eriocheir sinensis)

  • Banghong Wei,
  • Zhigang Yang,
  • Yongxu Cheng,
  • Jianyi Wang,
  • Junyu Zhou

DOI
https://doi.org/10.1186/s12953-018-0135-7
Journal volume & issue
Vol. 16, no. 1
pp. 1 – 11

Abstract

Read online

Abstract Background The finite marine resources make it difficult for us to obtain enough fish oil (FO) used in aquatic feeds. Another sustainable ingredients should be found to substitute FO. The effects of replacing FO with vegetable oil have been studied in a variety of crustaceans, but most studies have focused on the phenotypic effects. Little is known about the mechanisms of the effects. Methods To understand the molecular responses during the replacement of FO in Eriocheir sinensis, we investigated the effects of feeding FO or linseed oil (LO) on growth performance, digestive enzyme activity, fatty acid composition and protein expression in E. sinensis. Twenty-four juvenile crabs were fed diets containing FO or LO for 112 days. Weight, carapace length and width were recorded. Fatty acid composition of the diets and the hepatopancreas and protein expression in the hepatopancreas were analyzed. Results Growth performance and molting interval were unchanged by diet. Crabs fed FO and LO had same activity of lipase and amylase, but comparing with crabs fed LO, crabs fed FO had higher trypsin activity and lower pepsin activity. Hepatopancreas fatty acid composition changed to reflect the fatty acid composition of the diets. In total, 194 proteins were differentially expressed in the hepatopancreas between the diets. Expression of heat shock proteins was higher in crabs fed LO. Expression of fatty acid synthase, long-chain fatty acid transport protein 4, acyl-CoA delta-9 desaturase, and fatty acid-binding protein 1, was higher in crabs fed FO. Conclusions The substitution of FO with LO didn’t have any effects on the growth and molting of mitten crab, but could significantly decrease the ability of mitten crab to cope with stress. The high content of HUFAs in the hepatopancreas of mitten crab fed FO is due to the high abundance of the proteins relative to the transport of the HUFAs. These findings provide a reason of the high content of EPA and DHA in crabs fed with FO, and provide new information for the replacement of FO in diets of mitten crab.

Keywords