Heliyon (Dec 2023)
Synergistic effect of arsenic removal from petroleum condensate via liquid-liquid extraction: Thermodynamics, kinetics, DFT and McCabe-Thiele method
Abstract
This work presents the purification of petroleum condensate by removing arsenic ions via liquid-liquid extraction (LLE). Influence of pure and synergistic extractants is investigated. In terms of the practicability, following parameters are examined: the type of extractant, operating time, and temperature. Response surface methodology is used to design parameters such as organic-aqueous ratio and extractant concentration. Under optimal conditions; a mixture of 1 mol/L HCl and 0.02 mol/L thiourea with an organic/aqueous ratio of 1:4 at 323.15 K for 60 min, the extraction of arsenic reached 78.2 %. Further, batch simulation via two-stage counter-current extraction, and estimation by McCabe-Thiele diagram proved to be enhanced arsenic extraction to 95.3 %. Analysis by FTIR show that arsenic ions in petroleum condensate are formed as triphenylarsine compound ((C6H5)3As). The process of arsenic removal proved to be zero-order endothermic, irreversible and spontaneous reaction. The results obtained from the density functional theory (DFT) confirm that arsenic ions react with the synergistic extractant: effectively forming a covalent bond (As–S).