Symmetry (Feb 2022)
On Generalization of Different Integral Inequalities for Harmonically Convex Functions
Abstract
In this study, we first prove a parameterized integral identity involving differentiable functions. Then, for differentiable harmonically convex functions, we use this result to establish some new inequalities of a midpoint type, trapezoidal type, and Simpson type. Analytic inequalities of this type, as well as the approaches for solving them, have applications in a variety of domains where symmetry is important. Finally, several particular cases of recently discovered results are discussed, as well as applications to the special means of real numbers.
Keywords