Applied Surface Science Advances (Apr 2024)

Improved corrosion resistance of AZ31B Mg alloy by eco-friendly flash-PEO coatings

  • E. Merino,
  • A. Raja Chandrasekar,
  • A. Pakseresht,
  • M. Mohedano,
  • A. Durán,
  • Y. Castro

Journal volume & issue
Vol. 20
p. 100587

Abstract

Read online

The aim of this work was the preparation of an environmentally friendly protective coating on the AZ31B alloy using Flash plasma electrolytic oxidation (F-PEO) process. It was developed with different electrolyte compositions, that determine the morphology and properties of the coatings, this being crucial to understand the anti-corrosion properties. The incorporation of carbonate ions to the electrolyte proved to enhance the electrical response of the F-PEO process, resulting in a more efficient process with an energy reduced consumption of 1.1 kW h m−2μm−1. Surface and cross-sectional morphology analysis of the coatings revealed the presence of isolated pores structure with small pore size (less than 1 µm) that delays the infiltration of aggressive ions towards the substrate. The characterisation by XRD, EDX and Raman spectroscopy showed the presence of amorphous carbonate and phosphate phases in the FPEO-CO layer, that provide a self-restauration effect through a dissolution/reprecipitation mechanism. The lowest value of the corrosion current density was obtained for FPEO-CO coating, 4.60 × 10−7 A·cm−2, together with the highest impedance modulus (f<0.1 Hz), ⁓104 Ω·cm2, two orders of magnitude higher than the AZ31B Mg alloy. Furthermore, the corrosion protection properties of FPEO-CO coating were also analysed through an immersion test in 3.5 wt.% NaCl, confirming the excellent response of the coating for long times up to 336 h (2 weeks). The synergy between a more compact coating and the self-repairing ability of carbonate amorphous species plays a critical role in improving the corrosion resistance properties of the AZ31B Mg alloy, offering an eco-friendly alternative to chromate conversion coatings.

Keywords