Sensors (Feb 2024)

Research on the Effect of Vibrational Micro-Displacement of an Astronomical Camera on Detector Imaging

  • Bin Liu,
  • Shouxin Guan,
  • Feicheng Wang,
  • Xiaoming Zhang,
  • Tao Yu,
  • Ruyi Wei

DOI
https://doi.org/10.3390/s24031025
Journal volume & issue
Vol. 24, no. 3
p. 1025

Abstract

Read online

Scientific-grade cameras are frequently employed in industries such as spectral imaging technology, aircraft, medical detection, and astronomy, and are characterized by high precision, high quality, fast speed, and high sensitivity. Especially in the field of astronomy, obtaining information about faint light often requires long exposure with high-resolution cameras, which means that any external factors can cause the camera to become unstable and result in increased errors in the detection results. This paper aims to investigate the effect of displacement introduced by various vibration factors on the imaging of an astronomical camera during long exposure. The sources of vibration are divided into external vibration and internal vibration. External vibration mainly includes environmental vibration and resonance effects, while internal vibration mainly refers to the vibration caused by the force generated by the refrigeration module inside the camera during the working process of the camera. The cooling module is divided into water-cooled and air-cooled modes. Through the displacement and vibration experiments conducted on the camera, it is proven that the air-cooled mode will cause the camera to produce greater displacement changes relative to the water-cooled mode, leading to blurring of the imaging results and lowering the accuracy of astronomical detection. This paper compares the effects of displacement produced by two methods, fan cooling and water-circulation cooling, and proposes improvements to minimize the displacement variations in the camera and improve the imaging quality. This study provides a reference basis for the design of astronomical detection instruments and for determining the vibration source of cameras, which helps to promote the further development of astronomical detection.

Keywords