Iranian Journal of Basic Medical Sciences (Dec 2016)

Survival, proliferation, and migration of human meningioma stem-like cells in a nanopeptide scaffold

  • Sajad Sahab Negah,
  • Hadi Aligholi,
  • Zabihollah Khaksar,
  • Hadi Kazemi,
  • Sayed Mostafa Modarres Mousavi,
  • Maryam Safahani,
  • Parastoo Barati Dowom,
  • Ali Gorji

DOI
https://doi.org/10.22038/ijbms.2016.7907
Journal volume & issue
Vol. 19, no. 12
pp. 1271 – 1278

Abstract

Read online

Objective(s): In order to grow cells in a three-dimensional (3D) microenvironment, self-assembling peptides, such as PuraMatrix, have emerged with potential to mimic the extracellular matrix. The aim of the present study was to investigate the influence of the self-assembling peptide on the morphology, survival, proliferation rate, migration potential, and differentiation of human meningioma stem-like cells (hMgSCs). Materials and Methods: The efficacy of a novel method for placing hMgSCs in PuraMatrix (the injection approach) was compared to the encapsulation and surface plating methods. In addition, we designed a new method for measurement of migration distance in 3D cultivation of hMgSCs in PuraMatrix. Results: Our results revealed that hMgSCs have the ability to form spheres in stem cell culture condition. These meningioma cells expressed GFAP, CD133, vimentin, and nestin. Using the injection method, a higher proliferation rate of the hMgSCs was observed after seven days of culture. Furthermore, the novel migration assay was able to measure the migration of a single cell alone in 3D environment. Conclusion: The results indicate the injection method as an efficient technique for culturing hMgSCs in PuraMatrix. Furthermore, the novel migration assay enables us to evaluate the migration of hMgSCs.

Keywords