Water (Jul 2024)

Displacement Prediction Method for Rainfall-Induced Landslide Using Improved Completely Adaptive Noise Ensemble Empirical Mode Decomposition, Singular Spectrum Analysis, and Long Short-Term Memory on Time Series Data

  • Ke Yang,
  • Yi Wang,
  • Gonghao Duan

DOI
https://doi.org/10.3390/w16152111
Journal volume & issue
Vol. 16, no. 15
p. 2111

Abstract

Read online

Landslide disasters frequently result in significant casualties and property losses, underscoring the critical importance of research on landslide displacement prediction. This paper introduces an approach combining improved empirical mode decomposition (ICEEMDAN) and singular entropy-enhanced singular spectrum analysis (SSA) to predict landslide displacement using a time series short-duration memory network (LSTM). Initially, ICEEMDAN decomposes the landslide displacement time series into trend and periodic terms. SSA is then employed to denoise these components before fitting the trend term with LSTM. Pearson correlation analysis is utilized to identify characteristic factors within the LSTM model, followed by predictions using a multivariate LSTM model. The empirical results from the Baijiabao landslide in the Three Gorges Reservoir area demonstrate that the joint ICEEMDAN-SSA approach, when combined with LSTM modeling, outperforms the separate applications of SSA and ICEEMDAN, as well as other models such as RNN and SVM. Specifically, the ICEEMDAN-SSA-LSTM model achieves an RMSE of 6.472 mm and an MAE of 4.992 mm, which are considerably lower than those of the RNN model (19.945 mm and 15.343 mm, respectively) and the SVM model (16.584 mm and 11.748 mm, respectively). Additionally, the R2 value for the ICEEMDAN-SSA-LSTM model is 97.5%, significantly higher than the RNN model’s 72.3% and the SVM model’s 92.8%. By summing the predictions of the trend and periodic terms, the cumulative displacement prediction is obtained, indicating the superior accuracy of the ICEEMDAN-SSA-LSTM model. This model provides a new benchmark for precise landslide displacement prediction and contributes valuable insights to related research.

Keywords