Communications Biology (Mar 2024)

MicroRNA-221-3p inhibits the inflammatory response of keratinocytes by regulating the DYRK1A/STAT3 signaling pathway to promote wound healing in diabetes

  • Keyan Hu,
  • Lei Liu,
  • Songtao Tang,
  • Xin Zhang,
  • Hongfeng Chang,
  • Wenyang Chen,
  • Taotao Fan,
  • Lesha Zhang,
  • Bing Shen,
  • Qiu Zhang

DOI
https://doi.org/10.1038/s42003-024-05986-0
Journal volume & issue
Vol. 7, no. 1
pp. 1 – 15

Abstract

Read online

Abstract Diabetic foot ulcer (DFU), a serious complication of diabetes, remains a clinical challenge. MicroRNAs affect inflammation and may have therapeutic value in DFU. Here, we find that an miR-221-3p mimic reduces the inflammatory response and increases skin wound healing rates in a mouse model of diabetes, whereas miR-221-3p knockout produced the opposite result. In human keratinocytes cells, miR-221-3p suppresses the inflammatory response induced by high glucose. The gene encoding DYRK1A is a target of miR-221-3p. High glucose increases the expression of DYRK1A, but silencing DYRK1A expression decreases high glucose–induced inflammatory cytokine release via dephosphorylation of STAT3, a substrate of DYRK1A. Application of miR-221-3p mimic to human keratinocytes cells not only decreases DYRK1A expression but also inhibits high glucose–induced production of inflammatory cytokines to promote wound healing. This molecular mechanism whereby miR-221-3p regulates inflammation through the DYRK1A/STAT3 signaling pathway suggests targets and therapeutic approaches for treating DFU.