Materials & Design (Nov 2020)

Polymer lattice-reinforcement for enhancing ductility of concrete

  • Brian Salazar,
  • Parham Aghdasi,
  • Ian D. Williams,
  • Claudia P. Ostertag,
  • Hayden K. Taylor

Journal volume & issue
Vol. 196
p. 109184

Abstract

Read online

Concrete is the most widely used engineering material. While strong in compression, concrete is weak in tension and exhibits low ductility due to its low crack growth resistance. With increasing compressive strength, concrete becomes even more brittle, hence requiring appropriate reinforcement to enhance its ductility. This paper presents a new method for increasing the ductility of ultra-high-performance concrete by reinforcing it with 3D printed polymeric lattices made of either polylactic acid (PLA) or acrylonitrile butadiene styrene (ABS). These lattice-reinforced concrete specimens were then tested in compression and four-point bending. The effect of polymeric reinforcement ratios on mechanical properties was investigated by testing two lattice configurations. The lattices were very successful in transforming the brittle ultra-high-performance concrete (UHPC) into a ductile material with strain hardening behavior; all flexural specimens revealed multiple cracking and strain hardening behavior up to peak load. Increasing the ABS reinforcing ratio from 19.2% to 33.7% resulted in a 22% reduction in average compressive strength. However, in flexure, increasing the PLA reinforcing ratio from 19.2% to 33.7% resulted in a 38% increase in average peak load. The compression results of all specimens independent of their reinforcement ratio revealed smooth softening behavior in compression.

Keywords