Entropy (Mar 2021)
Dynamic Robustness of Semantic-Based Collaborative Knowledge Network of Open Source Project
Abstract
Robustness of the collaborative knowledge network (CKN) is critical to the success of open source projects. To study this robustness more comprehensively and accurately, we constructed a weighted CKN based on the semantic analysis of collaborative behavior, where (a) open source designers were the network nodes, (b) collaborative behavior among designers was the edges, and (c) collaborative text content intensity and collaborative frequency intensity were the edge weights. To study the robustness from a dynamic viewpoint, we constructed three CKNs from different stages of the project life cycle: the start-up, growth and maturation stages. The connectivity and collaboration efficiency of the weighted network were then used as robustness evaluation indexes. Further, we designed four edge failure modes based on the behavioral characteristics of open source designers. Finally, we carried out dynamic robustness analysis experiments based on the empirical data of a Local Motors open source car design project. Our results showed that the CKN performed differently at different stages of the project life cycle, and our specific findings could help community managers of open source projects to formulate different network protection strategies at different stages of their projects.
Keywords