PLoS Biology (Jul 2021)

BDNF produced by cerebral microglia promotes cortical plasticity and pain hypersensitivity after peripheral nerve injury.

  • Lianyan Huang,
  • Jianhua Jin,
  • Kai Chen,
  • Sikun You,
  • Hongyang Zhang,
  • Alexandra Sideris,
  • Monica Norcini,
  • Esperanza Recio-Pinto,
  • Jing Wang,
  • Wen-Biao Gan,
  • Guang Yang

DOI
https://doi.org/10.1371/journal.pbio.3001337
Journal volume & issue
Vol. 19, no. 7
p. e3001337

Abstract

Read online

Peripheral nerve injury-induced mechanical allodynia is often accompanied by abnormalities in the higher cortical regions, yet the mechanisms underlying such maladaptive cortical plasticity remain unclear. Here, we show that in male mice, structural and functional changes in the primary somatosensory cortex (S1) caused by peripheral nerve injury require neuron-microglial signaling within the local circuit. Following peripheral nerve injury, microglia in the S1 maintain ramified morphology and normal density but up-regulate the mRNA expression of brain-derived neurotrophic factor (BDNF). Using in vivo two-photon imaging and Cx3cr1CreER;Bdnfflox mice, we show that conditional knockout of BDNF from microglia prevents nerve injury-induced synaptic remodeling and pyramidal neuron hyperactivity in the S1, as well as pain hypersensitivity in mice. Importantly, S1-targeted removal of microglial BDNF largely recapitulates the beneficial effects of systemic BDNF depletion on cortical plasticity and allodynia. Together, these findings reveal a pivotal role of cerebral microglial BDNF in somatosensory cortical plasticity and pain hypersensitivity.