Physical Review X (Oct 2017)

Tuning across Universalities with a Driven Open Condensate

  • A. Zamora,
  • L. M. Sieberer,
  • K. Dunnett,
  • S. Diehl,
  • M. H. Szymańska

DOI
https://doi.org/10.1103/PhysRevX.7.041006
Journal volume & issue
Vol. 7, no. 4
p. 041006

Abstract

Read online Read online

Driven-dissipative systems in two dimensions can differ substantially from their equilibrium counterparts. In particular, a dramatic loss of off-diagonal algebraic order and superfluidity has been predicted to occur because of the interplay between coherent dynamics and external drive and dissipation in the thermodynamic limit. We show here that the order adopted by the system can be substantially altered by a simple, experimentally viable tuning of the driving process. More precisely, by considering the long-wavelength phase dynamics of a polariton quantum fluid in the optical parametric oscillator regime, we demonstrate that simply changing the strength of the pumping mechanism in an appropriate parameter range can substantially alter the level of effective spatial anisotropy induced by the driving laser and move the system into distinct scaling regimes. These include (i) the classic algebraically ordered superfluid below the Berezinskii-Kosterlitz-Thouless (BKT) transition, as in equilibrium; (ii) the nonequilibrium, long-wavelength-fluctuation-dominated Kardar-Parisi-Zhang (KPZ) phase; and the two associated topological-defect-dominated disordered phases caused by proliferation of (iii) entropic BKT vortex-antivortex pairs or (iv) repelling vortices in the KPZ phase. Furthermore, by analyzing the renormalization group flow in a finite system, we examine the length scales associated with these phases and assess their observability in current experimental conditions.