MATEC Web of Conferences (Jan 2018)

Aerodynamics analysis of electric car UM body surface using computational fluid dynamics

  • Mardji,
  • Andoko,
  • Prsetiyo Dani

DOI
https://doi.org/10.1051/matecconf/201820407016
Journal volume & issue
Vol. 204
p. 07016

Abstract

Read online

The body shape that is engineered in such a way will produce fluid flow characteristics that very and greatly affect the function of the shape of the body. However, until now researchers have not been able to find the right solution to diagnose and synthesize flow structures, so that it is done directly through experimental testing [3]. One of them by using the help of a software CFD (Computational Fluid Dynamics) is Ansys 18.1. Fluid Flow Analysis on the surface of the body electric car UM produces several characteristics such as fluid flow which has a significant obstacle, especially on the surface that has a wide surface that causes a flow that causes the flow is red which indicates the velocity of air flowing in that large area obtained maximum velocity air results of 21.1885m / s marked with the color red and velocity minimum of 0.03947m / s marked in blue, other than that when the air flows produce a pressure that produces the maximum pressure received by the body of 79.12Pa and the minimum pressure of -316.1Pa and the value of drag coefficient from the car body electric car UM obtained results of 0.46.