Journal of Biomedical Semantics (Feb 2022)
Transfer language space with similar domain adaptation: a case study with hepatocellular carcinoma
Abstract
Abstract Background Transfer learning is a common practice in image classification with deep learning where the available data is often limited for training a complex model with millions of parameters. However, transferring language models requires special attention since cross-domain vocabularies (e.g. between two different modalities MR and US) do not always overlap as the pixel intensity range overlaps mostly for images. Method We present a concept of similar domain adaptation where we transfer inter-institutional language models (context-dependent and context-independent) between two different modalities (ultrasound and MRI) to capture liver abnormalities. Results We use MR and US screening exam reports for hepatocellular carcinoma as the use-case and apply the transfer language space strategy to automatically label imaging exams with and without structured template with > 0.9 average f1-score. Conclusion We conclude that transfer learning along with fine-tuning the discriminative model is often more effective for performing shared targeted tasks than the training for a language space from scratch.
Keywords