Cells (Nov 2024)

VEGF—Virus Interactions: Pathogenic Mechanisms and Therapeutic Applications

  • Cristina Sánchez-Martínez,
  • Esther Grueso,
  • Tania Calvo-López,
  • Jorge Martinez-Ortega,
  • Ana Ruiz,
  • José M. Almendral

DOI
https://doi.org/10.3390/cells13211815
Journal volume & issue
Vol. 13, no. 21
p. 1815

Abstract

Read online

Many types of viruses directly or indirectly target the vascular endothelial growth factor (VEGF) system, which is a central regulator of vasculogenesis and angiogenesis in physiological homeostasis, causing diverse pathologies. Other viruses have been developed into effective therapeutic tools for VEGF modulation in conditions such as cancer and eye diseases. Some viruses may alter the levels of VEGF in the pathogenesis of respiratory syndromes, or they may encode VEGF-like factors, promoting vascular disruption and angiogenesis to enable viruses’ systemic spread. Oncogenic viruses may express interactive factors that perturb VEGF’s functional levels or downstream signaling, which increases the neovascularization and metastasis of tumors. Furthermore, many viruses are being developed as therapeutic vectors for vascular pathologies in clinical trials. Major examples are those viral vectors that inhibit the role of VEGF in the neovascularization required for cancer progression; this is achieved through the induction of immune responses, by exposing specific peptides that block signaling or by expressing anti-VEGF and anti-VEGF receptor-neutralizing antibodies. Other viruses have been engineered into effective pro- or anti-angiogenesis multitarget vectors for neovascular eye diseases, paving the way for therapies with improved safety and minimal side effects. This article critically reviews the large body of literature on these issues, highlighting those contributions that describe the molecular mechanisms, thus expanding our understanding of the VEGF–virus interactions in disease and therapy. This could facilitate the clinical use of therapeutic virus vectors in precision medicine for the VEGF system.

Keywords