Molecular Therapy: Oncolytics (Mar 2021)
Knockdown of the DJ-1 (PARK7) gene sensitizes pancreatic cancer to erlotinib inhibition
Abstract
The epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor erlotinib, in combination with gemcitabine, has been shown to be a promising therapy in the treatment of pancreatic cancer. Our previous study showed that DJ-1 promotes invasion and metastasis of pancreatic cancer cells by activating SRC/extracellular signal-regulated kinase (ERK)/uPA. The aim of this study was to evaluate whether knockdown of DJ-1 expression can sensitize pancreatic cancer cells to erlotinib treatment. Knockdown of DJ-1 expression accelerated erlotinib-induced cell apoptosis and improved the inhibitory effect of erlotinib on pancreatic cancer cell proliferation (for the BxPC-3, PANC-1, and MiaPACa-2 cell lines, regardless of KRAS mutation status) in vitro and in xenograft tumor growth in vivo. Knockdown of DJ-1 decreased K-RAS expression, membrane translocation, and activity in BxPC-3 cells. Knockdown of DJ-1 also decreased K-RAS, H-RAS, and N-RAS expression in PANC-1 and MiaPACa-2 cells. Knockdown of DJ-1 synergistically inhibited AKT and ERK1/2 phosphorylation with erlotinib in pancreatic cancer cells. These findings indicate that DJ-1 may activate the RAS pathway, reinforcing erlotinib drug resistance. Therefore, blocking DJ-1 in combination with the EGFR tyrosine kinase inhibitor erlotinib may be an attractive therapeutic target in pancreatic cancer.