Journal of Materials Science: Materials in Medicine (Mar 2023)

Optimization of magnetic fluid hyperthermia protocols for the elimination of breast cancer cells MCF7 using Mn-Zn ferrite ferrofluid

  • Anand Bhardwaj,
  • Kinnari Parekh,
  • Neeraj Jain

DOI
https://doi.org/10.1007/s10856-023-06715-5
Journal volume & issue
Vol. 34, no. 3
pp. 1 – 11

Abstract

Read online

Abstract The present study aimed to optimize magnetic fluid hyperthermia (MFH) protocols by standardizing MF incubation time, hyperthermic duration, magnetic field, and MFH sessions to achieve a better hyperthermic response for the profuse killing of human breast cancer cell cells MCF7. Magnetic nanoparticles and MF were characterized using XRD, VSM, and DLS. Induction heating was performed for 30 min at field strengths of 12.5 and 13.3 kA/m at a fixed frequency of 330 kHz with varying concentrations and incubation duration on MCF7 cells. Single and multiple sessions hyperthermia protocols were used to kill MCF7 cells and the cytotoxicity effect was analyzed using MTT assay. Single and multiple sessions MFH protocols were established to kill breast cancer cells utilizing 0.2 mg/mL MF at 13.3 kA/m field and 330 kHz frequency and maintaining the hyperthermic temperature of 43–45 °C for 30 min. The single session MFH revealed severe toxicity of MF leading to more than 75% of cell death after 24 h of MF incubation. Multiple sessions hyperthermia resulted in more than 90% killing of MCF7 cells after two consequent 3 h MF incubation with 3 h gap. Each 3 h of MF incubation was followed by 30 min of induction heating. Multiple sessions hyperthermia was effective in killing a larger cell population compared to the single session protocol. The results may help in optimizing protocols for the profuse killing of cancer cells of multiple origins, and aid in deciding futuristic in vivo MFH-based therapeutic strategies against breast cancer. Graphical Abstract Variation in MCF7 cells’ viability due to HT, MF, and MF + HT in multiple sessions.