Journal of High Energy Physics (Sep 2023)
Beyond lepton number violation at the HL-LHC: resolving heavy neutrino-antineutrino oscillations
Abstract
Abstract Collider testable low-scale seesaw models predict pseudo-Dirac heavy neutrinos, that can produce an oscillating pattern of lepton number conserving and lepton number violating events. We explore if such heavy neutrino-antineutrino oscillations can be resolved at the HL-LHC. To that end, we employ the first ever full Monte Carlo simulation of the oscillations, for several example benchmark points, and show under which conditions the CMS experiment is able to discover them. The workflow builds on a FeynRules model file for the phenomenological symmetry protected seesaw scenario (pSPSS) and a patched version of MadGraph, able to simulate heavy neutrino-antineutrino oscillations. We use the fast detector simulation Delphes and present a statistical analysis capable of inferring the significance of oscillations in the simulated data. Our results demonstrate that, for heavy neutrino mass splittings smaller than about 100 μeV, the discovery prospects for heavy neutrino-antineutrino oscillation at the HL-LHC are promising.
Keywords