Physical Review Accelerators and Beams (Mar 2016)

Design of a 5-MA 100-ns linear-transformer-driver accelerator for wire array Z-pinch experiments

  • Zhou Lin,
  • Li Zhenghong,
  • Wang Zhen,
  • Liang Chuan,
  • Li Mingjia,
  • Qi Jianmin,
  • Chu Yanyun

DOI
https://doi.org/10.1103/PhysRevAccelBeams.19.030401
Journal volume & issue
Vol. 19, no. 3
p. 030401

Abstract

Read online Read online

The linear-transformer-driver (LTD) is a recently developed pulsed-power technology that shows great promise for a number of applications. These include a Z-pinch-driven fission-fusion-hybrid reactor that is being developed by the Chinese Academy of Engineering Physics. In support of the reactor development effort, we are planning to build an LTD-based accelerator that is optimized for driving wire-array Z-pinch loads. The accelerator comprises six modules in parallel, each of which has eight series 0.8-MA LTD cavities in a voltage-adder configuration. Vacuum transmission lines are used from the interior of the adder to the central vacuum chamber where the load is placed. Thus the traditional stack-flashover problem is eliminated. The machine is 3.2 m tall and 12 m in outer diameter including supports. A prototype cavity was built and tested for more than 6000 shots intermittently at a repetition rate of 0.1 Hz. A novel trigger, in which only one input trigger pulse is needed by utilizing an internal trigger brick, was developed and successfully verified in these shots. A full circuit modeling was conducted for the accelerator. The simulation result shows that a current pulse rising to 5.2 MA in 91 ns (10%–90%) can be delivered to the wire-array load, which is 1.5 cm in height, 1.2 cm in initial radius, and 1 mg in mass. The maximum implosion velocity of the load is 32 cm/μs when compressed to 0.1 of the initial radius. The maximum kinetic energy is 78 kJ, which is 11.7% of the electric energy stored in the capacitors. This accelerator is supposed to enable a radiation energy efficiency of 20%–30%, providing a high efficient facility for research on the fast Z pinch and technologies for repetition-rate-operated accelerators.