Cellular & Molecular Biology Letters (Jun 2018)

ClC-2 knockdown prevents cerebrovascular remodeling via inhibition of the Wnt/β-catenin signaling pathway

  • Jingjing Lu,
  • Feng Xu,
  • Yingna Zhang,
  • Hong Lu,
  • Jiewen Zhang

DOI
https://doi.org/10.1186/s11658-018-0095-z
Journal volume & issue
Vol. 23, no. 1
pp. 1 – 13

Abstract

Read online

Abstract Background Mishandling of intracellular chloride (Cl−) concentration ([Cl−]i) in cerebrovascular smooth muscle cells is implicated in several pathological processes, including hyperplasia and remodeling. We investigated the effects of ClC-2-mediated Cl− efflux on the proliferation of human brain vascular smooth muscle cells (HBVSMCs) induced by angiotensin II (AngII). Methods Cell proliferation and motility were determined using the CCK-8, bromodeoxyuridine staining, wound healing and invasion assays. ClC-2, PCNA, Ki67, survivin and cyclin D1 expression, and β-catenin and GSK-3β phosphorylation were examined using western blotting. Histological analyses were performed using hematoxylin and eosin staining and α-SMA staining. Results Our results showed that AngII-induced HBVSMC proliferation was accompanied by a decrease in [Cl−]i and an increase in ClC-2 expression. Inhibition of ClC-2 by siRNA prevented AngII from inducing the efflux of Cl−. AngII-induced HBVSMC proliferation, migration and invasion were significantly attenuated by ClC-2 downregulation. The inhibitory effects of ClC-2 knockout on HBVSMC proliferation and motility were associated with inactivation of the Wnt/β-catenin signaling pathway, as evidenced by inhibition of β-catenin phosphorylation and nuclear translocation, and decrease of GSK-3β phosphorylation and survivin and cyclin D1 expression. Recombinant Wnt3a treatment markedly reversed the effect of ClC-2 knockdown on HBVSMC viability. An in vivo study revealed that knockdown of ClC-2 with shRNA adenovirus ameliorated basilar artery remodeling by inhibiting Wnt/β-catenin signaling in AngII-treated mice. Conclusion This study demonstrates that blocking ClC-2-mediated Cl− efflux inhibits AngII-induced cerebrovascular smooth muscle cell proliferation and migration by inhibiting the Wnt/β-catenin pathway. Our data indicate that downregulation of ClC-2 may be a viable strategy in the prevention of hyperplasia and remodeling of cerebrovascular smooth muscle cells.

Keywords