Science and Engineering of Composite Materials (Jul 2021)
Experimental and microstructure analysis of the penetration resistance of composite structures
Abstract
Composite structures (SiC/UHMWPE/TC4; SiC/TC4/UHMWPE) were designed using silicon carbide (SiC)ceramics, ultra-high-molecular-weight polyethylene (UHMWPE) laminate, and titanium alloys (TC4s). Penetration experiments and numerical simulations were carried out to study the anti-penetration mechanism and energy characteristics of the composite structures, and the microstructure of the TC4 was analyzed. The results show that the two composite structures designed have advantages in reducing mass and thickness. The energy proportion of the TC4 is the largest among the three materials, which mainly determines the anti-penetration performance. The microstructure of the TC4 in composite structure I shows rough edges of bullet holes, a large number of adiabatic shear bands (ASBs), ASB bends and bifurcates, and many cracks, which lead to spalling damage of the TC4. The microstructure of the TC4 in composite structure II shows flat edges of bullet holes, several straight ASBs, and no cracks, which leads to brittle fragmentation. The initiation, expansion, combination of ASBs and cracks lead to more energy consumption. Therefore, the combination form of composite structure I can give full play the energy dissipation mechanism of the TC4 and has better anti-penetration performance than composite structure II.
Keywords